When every flat ideal is projective
Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we study the class of rings in which every flat ideal is projective. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as direct products, and trivial ring extensions. Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property.
Classification : 13D02, 13D05
Keywords: FP-ring; direct product; homomorphic image; amalgamation of rings; $A\bowtie^{f}J $; trivial extension
@article{CMUC_2014__55_1_a0,
     author = {Cheniour, Fatima and Mahdou, Najib},
     title = {When every flat ideal is projective},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2014},
     mrnumber = {3160821},
     zbl = {06383780},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a0/}
}
TY  - JOUR
AU  - Cheniour, Fatima
AU  - Mahdou, Najib
TI  - When every flat ideal is projective
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2014
SP  - 1
EP  - 7
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a0/
LA  - en
ID  - CMUC_2014__55_1_a0
ER  - 
%0 Journal Article
%A Cheniour, Fatima
%A Mahdou, Najib
%T When every flat ideal is projective
%J Commentationes Mathematicae Universitatis Carolinae
%D 2014
%P 1-7
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a0/
%G en
%F CMUC_2014__55_1_a0
Cheniour, Fatima; Mahdou, Najib. When every flat ideal is projective. Commentationes Mathematicae Universitatis Carolinae, Tome 55 (2014) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/CMUC_2014__55_1_a0/