Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 4, pp. 509-525.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the existence of at least one positive solution to the dynamic boundary value problem \begin{align*} -y^{\Delta\Delta}(t) = \lambda f(t,y(t))\text{, }t\in [0,T]_{\mathbb{T}} y(0) = \int_{\tau_1}^{\tau_2}F_1(s,y(s)) \Delta s y\left(\sigma^2(T)\right) = \int_{\tau_3}^{\tau_4}F_2(s,y(s)) \Delta s, \end{align*} where $\mathbb{T}$ is an arbitrary time scale with $0\tau_1\tau_2\sigma^2(T)$ and $0\tau_3\tau_4\sigma^2(T)$ satisfying $\tau_1$, $\tau_2$, $\tau_3$, $\tau_4\in \mathbb{T}$, and where the boundary conditions at $t=0$ and $t=\sigma^2(T)$ can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.
Classification : 26E70, 34B10, 34B15, 34B18, 34N05, 39A10, 47H07
Keywords: time scales; integral boundary condition; second-order boundary value problem; cone; positive solution
@article{CMUC_2013__54_4_a4,
     author = {Goodrich, Christopher S.},
     title = {Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {509--525},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2013},
     mrnumber = {3125073},
     zbl = {06373981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a4/}
}
TY  - JOUR
AU  - Goodrich, Christopher S.
TI  - Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 509
EP  - 525
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a4/
LA  - en
ID  - CMUC_2013__54_4_a4
ER  - 
%0 Journal Article
%A Goodrich, Christopher S.
%T Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 509-525
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a4/
%G en
%F CMUC_2013__54_4_a4
Goodrich, Christopher S. Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 4, pp. 509-525. http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a4/