Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 4, pp. 493-508
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We discuss regularity results concerning local minimizers $u: \mathbb R^n\supset \Omega\rightarrow\mathbb R^n$ of variational integrals like \begin{align*} \int_{\Omega}\{F(\cdot ,\varepsilon (w))-f\cdot w\}\,dx \end{align*} defined on energy classes of solenoidal fields. For the potential $F$ we assume a $(p,q)$-elliptic growth condition. In the situation without $x$-dependence it is known that minimizers are of class $C^{1,\alpha }$ on an open subset $\Omega_{0}$ of $\Omega$ with full measure if $q p\,\frac{n+2}{n}$ (for $n=2$ we have $\Omega_{0}=\Omega$). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system.
Classification :
35B65, 35J50, 35Q35, 49N60, 76D07, 76M30
Keywords: Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer
Keywords: Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer
@article{CMUC_2013__54_4_a3,
author = {Breit, Dominic},
title = {Smoothness properties of solutions to the nonlinear {Stokes} problem with nonautonomous potentials},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {493--508},
publisher = {mathdoc},
volume = {54},
number = {4},
year = {2013},
mrnumber = {3125072},
zbl = {06373980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/}
}
TY - JOUR AU - Breit, Dominic TI - Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 493 EP - 508 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/ LA - en ID - CMUC_2013__54_4_a3 ER -
%0 Journal Article %A Breit, Dominic %T Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials %J Commentationes Mathematicae Universitatis Carolinae %D 2013 %P 493-508 %V 54 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/ %G en %F CMUC_2013__54_4_a3
Breit, Dominic. Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 4, pp. 493-508. http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/