Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 4, pp. 493-508.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss regularity results concerning local minimizers $u: \mathbb R^n\supset \Omega\rightarrow\mathbb R^n$ of variational integrals like \begin{align*} \int_{\Omega}\{F(\cdot ,\varepsilon (w))-f\cdot w\}\,dx \end{align*} defined on energy classes of solenoidal fields. For the potential $F$ we assume a $(p,q)$-elliptic growth condition. In the situation without $x$-dependence it is known that minimizers are of class $C^{1,\alpha }$ on an open subset $\Omega_{0}$ of $\Omega$ with full measure if $q p\,\frac{n+2}{n}$ (for $n=2$ we have $\Omega_{0}=\Omega$). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system.
Classification : 35B65, 35J50, 35Q35, 49N60, 76D07, 76M30
Keywords: Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer
@article{CMUC_2013__54_4_a3,
     author = {Breit, Dominic},
     title = {Smoothness properties of solutions to the nonlinear {Stokes} problem with nonautonomous potentials},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {493--508},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2013},
     mrnumber = {3125072},
     zbl = {06373980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/}
}
TY  - JOUR
AU  - Breit, Dominic
TI  - Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 493
EP  - 508
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/
LA  - en
ID  - CMUC_2013__54_4_a3
ER  - 
%0 Journal Article
%A Breit, Dominic
%T Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 493-508
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/
%G en
%F CMUC_2013__54_4_a3
Breit, Dominic. Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 4, pp. 493-508. http://geodesic.mathdoc.fr/item/CMUC_2013__54_4_a3/