A note on the intersection ideal $\mathcal M\cap \mathcal N$
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 437-445.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove among other theorems that it is consistent with $ZFC$ that there exists a set $X\subseteq 2^\omega$ which is not meager additive, yet it satisfies the following property: for each $F_\sigma$ measure zero set $F$, $X+F$ belongs to the intersection ideal $\mathcal M\cap \mathcal N$.
Classification : 03E05, 03E17
Keywords: $F_\sigma$ measure zero sets; intersection ideal $\mathcal M\cap \mathcal N$; meager additive sets; sets perfectly meager in the transitive sense; $\gamma$-sets
@article{CMUC_2013__54_3_a9,
     author = {Weiss, Tomasz},
     title = {A note on the intersection ideal $\mathcal M\cap \mathcal N$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {437--445},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a9/}
}
TY  - JOUR
AU  - Weiss, Tomasz
TI  - A note on the intersection ideal $\mathcal M\cap \mathcal N$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 437
EP  - 445
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a9/
LA  - en
ID  - CMUC_2013__54_3_a9
ER  - 
%0 Journal Article
%A Weiss, Tomasz
%T A note on the intersection ideal $\mathcal M\cap \mathcal N$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 437-445
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a9/
%G en
%F CMUC_2013__54_3_a9
Weiss, Tomasz. A note on the intersection ideal $\mathcal M\cap \mathcal N$. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 437-445. http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a9/