A note on the intersection ideal $\mathcal M\cap \mathcal N$
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 437-445
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove among other theorems that it is consistent with $ZFC$ that there exists a set $X\subseteq 2^\omega$ which is not meager additive, yet it satisfies the following property: for each $F_\sigma$ measure zero set $F$, $X+F$ belongs to the intersection ideal $\mathcal M\cap \mathcal N$.
Classification :
03E05, 03E17
Keywords: $F_\sigma$ measure zero sets; intersection ideal $\mathcal M\cap \mathcal N$; meager additive sets; sets perfectly meager in the transitive sense; $\gamma$-sets
Keywords: $F_\sigma$ measure zero sets; intersection ideal $\mathcal M\cap \mathcal N$; meager additive sets; sets perfectly meager in the transitive sense; $\gamma$-sets
@article{CMUC_2013__54_3_a9,
author = {Weiss, Tomasz},
title = {A note on the intersection ideal $\mathcal M\cap \mathcal N$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {437--445},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a9/}
}
TY - JOUR AU - Weiss, Tomasz TI - A note on the intersection ideal $\mathcal M\cap \mathcal N$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 437 EP - 445 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a9/ LA - en ID - CMUC_2013__54_3_a9 ER -
Weiss, Tomasz. A note on the intersection ideal $\mathcal M\cap \mathcal N$. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 437-445. http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a9/