On McCoy condition and semicommutative rings
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 329-337.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a ring and $\sigma$ an endomorphism of $R$. We give a generalization of McCoy's Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28--29] to the setting of skew polynomial rings of the form $R[x;\sigma]$. As a consequence, we will show some results on semicommutative and $\sigma$-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.
Classification : 16S36, 16U80
Keywords: Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma$-skew McCoy
@article{CMUC_2013__54_3_a1,
     author = {Louzari, Mohamed},
     title = {On {McCoy} condition and semicommutative rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a1/}
}
TY  - JOUR
AU  - Louzari, Mohamed
TI  - On McCoy condition and semicommutative rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 329
EP  - 337
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a1/
LA  - en
ID  - CMUC_2013__54_3_a1
ER  - 
%0 Journal Article
%A Louzari, Mohamed
%T On McCoy condition and semicommutative rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 329-337
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a1/
%G en
%F CMUC_2013__54_3_a1
Louzari, Mohamed. On McCoy condition and semicommutative rings. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a1/