On McCoy condition and semicommutative rings
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 329-337
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a ring and $\sigma$ an endomorphism of $R$. We give a generalization of McCoy's Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28--29] to the setting of skew polynomial rings of the form $R[x;\sigma]$. As a consequence, we will show some results on semicommutative and $\sigma$-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.
Classification :
16S36, 16U80
Keywords: Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma$-skew McCoy
Keywords: Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma$-skew McCoy
@article{CMUC_2013__54_3_a1,
author = {Louzari, Mohamed},
title = {On {McCoy} condition and semicommutative rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {329--337},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a1/}
}
Louzari, Mohamed. On McCoy condition and semicommutative rings. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a1/