Near-homogeneous spherical Latin bitrades
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 313-328.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A planar Eulerian triangulation is a simple plane graph in which each face is a triangle and each vertex has even degree. Such objects are known to be equivalent to spherical Latin bitrades. (A Latin bitrade describes the difference between two Latin squares of the same order.) We give a classification in the near-regular case when each vertex is of degree $4$ or $6$ (which we call a near-homogeneous spherical Latin bitrade, or NHSLB). The classification demonstrates that any NHSLB is equal to two graphs embedded in hemispheres glued at the equator, where each hemisphere belongs to one of nine possible types, each of which may be described recursively.
Classification : 05B15, 05C10, 05C45
Keywords: planar Eulerian triangulation; Latin bitrade; Latin square
@article{CMUC_2013__54_3_a0,
     author = {Cavenagh, Nicholas J.},
     title = {Near-homogeneous spherical {Latin} bitrades},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {313--328},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a0/}
}
TY  - JOUR
AU  - Cavenagh, Nicholas J.
TI  - Near-homogeneous spherical Latin bitrades
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 313
EP  - 328
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a0/
LA  - en
ID  - CMUC_2013__54_3_a0
ER  - 
%0 Journal Article
%A Cavenagh, Nicholas J.
%T Near-homogeneous spherical Latin bitrades
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 313-328
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a0/
%G en
%F CMUC_2013__54_3_a0
Cavenagh, Nicholas J. Near-homogeneous spherical Latin bitrades. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 3, pp. 313-328. http://geodesic.mathdoc.fr/item/CMUC_2013__54_3_a0/