The sup = max problem for the extent of generalized metric spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 245-257.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.
Classification : 03E10, 54A25, 54D20, 54E18
Keywords: extent; Lindelöf degree; $\Sigma$-space; strict $p$-space; semi-stratifiable
@article{CMUC_2013__54_2_a9,
     author = {Hirata, Yasushi and Yajima, Yukinobu},
     title = {The sup = max problem for the extent  of generalized metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {245--257},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2013},
     mrnumber = {3067707},
     zbl = {06221266},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a9/}
}
TY  - JOUR
AU  - Hirata, Yasushi
AU  - Yajima, Yukinobu
TI  - The sup = max problem for the extent  of generalized metric spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 245
EP  - 257
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a9/
LA  - en
ID  - CMUC_2013__54_2_a9
ER  - 
%0 Journal Article
%A Hirata, Yasushi
%A Yajima, Yukinobu
%T The sup = max problem for the extent  of generalized metric spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 245-257
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a9/
%G en
%F CMUC_2013__54_2_a9
Hirata, Yasushi; Yajima, Yukinobu. The sup = max problem for the extent  of generalized metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a9/