A poset of topologies on the set of real numbers
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 189-196
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
On the set $\mathbb R$ of real numbers we consider a poset $\mathcal P_\tau(\mathbb R)$ (by inclusion) of topologies $\tau(A)$, where $A\subseteq \mathbb R$, such that $A_1\supseteq A_2$ iff $\tau(A_1)\subseteq \tau(A_2)$. The poset has the minimal element $\tau (\mathbb R)$, the Euclidean topology, and the maximal element $\tau (\emptyset)$, the Sorgenfrey topology. We are interested when two topologies $\tau_1$ and $\tau_2$ (especially, for $\tau_2 = \tau(\emptyset)$) from the poset define homeomorphic spaces $(\mathbb R, \tau_1)$ and $(\mathbb R, \tau_2)$. In particular, we prove that for a closed subset $A$ of $\mathbb R$ the space $(\mathbb R, \tau(A))$ is homeomorphic to the Sorgenfrey line $(\mathbb R, \tau(\emptyset))$ iff $A$ is countable. We study also common properties of the spaces $(\mathbb R, \tau(A)), A\subseteq \mathbb R$.
Classification :
54A10
Keywords: Sorgenfrey line; poset of topologies on the set of real numbers
Keywords: Sorgenfrey line; poset of topologies on the set of real numbers
@article{CMUC_2013__54_2_a5,
author = {Chatyrko, Vitalij A. and Hattori, Yasunao},
title = {A poset of topologies on the set of real numbers},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {189--196},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2013},
mrnumber = {3067703},
zbl = {06221262},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a5/}
}
TY - JOUR AU - Chatyrko, Vitalij A. AU - Hattori, Yasunao TI - A poset of topologies on the set of real numbers JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 189 EP - 196 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a5/ LA - en ID - CMUC_2013__54_2_a5 ER -
Chatyrko, Vitalij A.; Hattori, Yasunao. A poset of topologies on the set of real numbers. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 189-196. http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a5/