Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 141-157.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

“The kernel functor” $W\xrightarrow{k}\operatorname{LFrm}$ from the category $W$ of archimedean lattice-ordered groups with distinguished weak unit onto LFrm, of Lindelöf completely regular frames, preserves and reflects monics. In $W$, monics are one-to-one, but not necessarily so in LFrm. An embedding $\varphi \in W$ for which $k\varphi $ is one-to-one is termed kernel-injective, or KI; these are the topic of this paper. The situation is contrasted with kernel-surjective and -preserving (KS and KP). The $W$-objects every embedding of which is KI are characterized; this identifies the $\operatorname{LFrm}$-objects out of which every monic is one-to-one. The issue of when a $W$-map $G\xrightarrow{\varphi }\cdot $ is KI is reduced to when a related epicompletion of $G$ is KI. The poset $EC(G)$ of epicompletions of $G$ is reasonably well-understood; in particular, it has the functorial maximum denoted $\beta G$, and for $G=C(X)$, the Baire functions $B(X)\in EC(C(X))$. The main theorem is: $E\in EC(C(X))$ is KI iff $B(X)\overset{*}\leq E\overset{*}\leq \beta C(X)$ in the order of $EC(C(X))$. This further identifies in a concrete way many $\operatorname{LFrm}$-monics which are/are not one-to-one.
Classification : 06D22, 06F20, 18A20, 18A40, 26A21, 28A05, 54C30, 54C40, 54C50
Keywords: Baire functions; archimedean lattice-ordered group; Lindelöf frame; monomorphism
@article{CMUC_2013__54_2_a2,
     author = {Ball, Richard N. and Hager, Anthony W.},
     title = {Frame monomorphisms and a feature of the $l$-group of {Baire} functions on a topological space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {141--157},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2013},
     mrnumber = {3067700},
     zbl = {06221259},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/}
}
TY  - JOUR
AU  - Ball, Richard N.
AU  - Hager, Anthony W.
TI  - Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 141
EP  - 157
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/
LA  - en
ID  - CMUC_2013__54_2_a2
ER  - 
%0 Journal Article
%A Ball, Richard N.
%A Hager, Anthony W.
%T Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 141-157
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/
%G en
%F CMUC_2013__54_2_a2
Ball, Richard N.; Hager, Anthony W. Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 141-157. http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/