Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 141-157
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
“The kernel functor” $W\xrightarrow{k}\operatorname{LFrm}$ from the category $W$ of archimedean lattice-ordered groups with distinguished weak unit onto LFrm, of Lindelöf completely regular frames, preserves and reflects monics. In $W$, monics are one-to-one, but not necessarily so in LFrm. An embedding $\varphi \in W$ for which $k\varphi $ is one-to-one is termed kernel-injective, or KI; these are the topic of this paper. The situation is contrasted with kernel-surjective and -preserving (KS and KP). The $W$-objects every embedding of which is KI are characterized; this identifies the $\operatorname{LFrm}$-objects out of which every monic is one-to-one. The issue of when a $W$-map $G\xrightarrow{\varphi }\cdot $ is KI is reduced to when a related epicompletion of $G$ is KI. The poset $EC(G)$ of epicompletions of $G$ is reasonably well-understood; in particular, it has the functorial maximum denoted $\beta G$, and for $G=C(X)$, the Baire functions $B(X)\in EC(C(X))$. The main theorem is: $E\in EC(C(X))$ is KI iff $B(X)\overset{*}\leq E\overset{*}\leq \beta C(X)$ in the order of $EC(C(X))$. This further identifies in a concrete way many $\operatorname{LFrm}$-monics which are/are not one-to-one.
Classification :
06D22, 06F20, 18A20, 18A40, 26A21, 28A05, 54C30, 54C40, 54C50
Keywords: Baire functions; archimedean lattice-ordered group; Lindelöf frame; monomorphism
Keywords: Baire functions; archimedean lattice-ordered group; Lindelöf frame; monomorphism
@article{CMUC_2013__54_2_a2,
author = {Ball, Richard N. and Hager, Anthony W.},
title = {Frame monomorphisms and a feature of the $l$-group of {Baire} functions on a topological space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {141--157},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2013},
mrnumber = {3067700},
zbl = {06221259},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/}
}
TY - JOUR AU - Ball, Richard N. AU - Hager, Anthony W. TI - Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 141 EP - 157 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/ LA - en ID - CMUC_2013__54_2_a2 ER -
%0 Journal Article %A Ball, Richard N. %A Hager, Anthony W. %T Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space %J Commentationes Mathematicae Universitatis Carolinae %D 2013 %P 141-157 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/ %G en %F CMUC_2013__54_2_a2
Ball, Richard N.; Hager, Anthony W. Frame monomorphisms and a feature of the $l$-group of Baire functions on a topological space. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 141-157. http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a2/