Compacta are maximally $G_\delta$-resolvable
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 259-261
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum $X$ contains $\Delta(X)$ many pairwise disjoint dense subsets, where $\Delta(X)$ denotes the minimum size of a non-empty open set in $X$. The aim of this note is to prove the following analogous result: Every compactum $X$ contains $\Delta_\delta(X)$ many pairwise disjoint $G_\delta$-dense subsets, where $\Delta_\delta(X)$ denotes the minimum size of a non-empty $G_\delta$ set in $X$.
Classification :
03E10, 54A25, 54D30
Keywords: compact spaces; $G_\delta $-sets; resolvability
Keywords: compact spaces; $G_\delta $-sets; resolvability
@article{CMUC_2013__54_2_a10,
author = {Juh\'asz, Istv\'an and Szentmikl\'ossy, Zolt\'an},
title = {Compacta are maximally $G_\delta$-resolvable},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {259--261},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2013},
mrnumber = {3067708},
zbl = {06221267},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a10/}
}
TY - JOUR AU - Juhász, István AU - Szentmiklóssy, Zoltán TI - Compacta are maximally $G_\delta$-resolvable JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 259 EP - 261 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a10/ LA - en ID - CMUC_2013__54_2_a10 ER -
Juhász, István; Szentmiklóssy, Zoltán. Compacta are maximally $G_\delta$-resolvable. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 259-261. http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a10/