Compacta are maximally $G_\delta$-resolvable
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 259-261.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum $X$ contains $\Delta(X)$ many pairwise disjoint dense subsets, where $\Delta(X)$ denotes the minimum size of a non-empty open set in $X$. The aim of this note is to prove the following analogous result: Every compactum $X$ contains $\Delta_\delta(X)$ many pairwise disjoint $G_\delta$-dense subsets, where $\Delta_\delta(X)$ denotes the minimum size of a non-empty $G_\delta$ set in $X$.
Classification : 03E10, 54A25, 54D30
Keywords: compact spaces; $G_\delta $-sets; resolvability
@article{CMUC_2013__54_2_a10,
     author = {Juh\'asz, Istv\'an and Szentmikl\'ossy, Zolt\'an},
     title = {Compacta are maximally $G_\delta$-resolvable},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {259--261},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2013},
     mrnumber = {3067708},
     zbl = {06221267},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a10/}
}
TY  - JOUR
AU  - Juhász, István
AU  - Szentmiklóssy, Zoltán
TI  - Compacta are maximally $G_\delta$-resolvable
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 259
EP  - 261
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a10/
LA  - en
ID  - CMUC_2013__54_2_a10
ER  - 
%0 Journal Article
%A Juhász, István
%A Szentmiklóssy, Zoltán
%T Compacta are maximally $G_\delta$-resolvable
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 259-261
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a10/
%G en
%F CMUC_2013__54_2_a10
Juhász, István; Szentmiklóssy, Zoltán. Compacta are maximally $G_\delta$-resolvable. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 259-261. http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a10/