A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 121-139.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The class of $s$-spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf $p$-spaces, metrizable spaces with the weight $\leq 2^\omega $, but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that $s$-spaces are in a duality with Lindelöf $\Sigma $-spaces: $X$ is an $s$-space if and only if some (every) remainder of $X$ in a compactification is a Lindelöf $\Sigma $-space [Arhangel'skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. {220} (2013), 71--81]. A basic fact is established: the weight and the networkweight coincide for all $s$-spaces. This theorem generalizes the similar statement about Čech-complete spaces. We also study hereditarily $s$-spaces, provide various sufficient conditions for a space to be a hereditarily $s$-space, and establish that every metrizable space has a dense subspace which is a hereditarily $s$-space. It is also shown that every dense-in-itself compact hereditarily $s$-space is metrizable.
Classification : 54A25, 54B05
Keywords: metrizable; Lindelöf $p$-space; Lindelöf $\Sigma $-space; remainder; compactification; $\sigma $-space; countable network; countable type; perfect mapping
@article{CMUC_2013__54_2_a1,
     author = {Arhangel'skii, A. V.},
     title = {A generalization of {\v{C}ech-complete} spaces and {Lindel\"of} $\Sigma $-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2013},
     mrnumber = {3067699},
     zbl = {06221258},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a1/}
}
TY  - JOUR
AU  - Arhangel'skii, A. V.
TI  - A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 121
EP  - 139
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a1/
LA  - en
ID  - CMUC_2013__54_2_a1
ER  - 
%0 Journal Article
%A Arhangel'skii, A. V.
%T A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 121-139
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a1/
%G en
%F CMUC_2013__54_2_a1
Arhangel'skii, A. V. A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 2, pp. 121-139. http://geodesic.mathdoc.fr/item/CMUC_2013__54_2_a1/