Involutive birational transformations of arbitrary complexity in Euclidean spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 111-117.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A broad family of involutive birational transformations of an open dense subset of $\mathbb R^n$ onto itself is constructed explicitly. Examples with arbitrarily high complexity are presented. Construction of birational transformations such that $\phi^k= \mathrm{Id}$ for a fixed integer $k>2$ is also presented.
Classification : 14E05
Keywords: rational mapping; birational transformation; involutive transformation
@article{CMUC_2013__54_1_a9,
     author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
     title = {Involutive birational transformations of arbitrary complexity in {Euclidean} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {111--117},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2013},
     mrnumber = {3038076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
AU  - Kowalski, Oldřich
TI  - Involutive birational transformations of arbitrary complexity in Euclidean spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 111
EP  - 117
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/
LA  - en
ID  - CMUC_2013__54_1_a9
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%A Kowalski, Oldřich
%T Involutive birational transformations of arbitrary complexity in Euclidean spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 111-117
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/
%G en
%F CMUC_2013__54_1_a9
Dušek, Zdeněk; Kowalski, Oldřich. Involutive birational transformations of arbitrary complexity in Euclidean spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 111-117. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/