Involutive birational transformations of arbitrary complexity in Euclidean spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 111-117
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A broad family of involutive birational transformations of an open dense subset of $\mathbb R^n$ onto itself is constructed explicitly. Examples with arbitrarily high complexity are presented. Construction of birational transformations such that $\phi^k= \mathrm{Id}$ for a fixed integer $k>2$ is also presented.
Classification :
14E05
Keywords: rational mapping; birational transformation; involutive transformation
Keywords: rational mapping; birational transformation; involutive transformation
@article{CMUC_2013__54_1_a9,
author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
title = {Involutive birational transformations of arbitrary complexity in {Euclidean} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {111--117},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2013},
mrnumber = {3038076},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/}
}
TY - JOUR AU - Dušek, Zdeněk AU - Kowalski, Oldřich TI - Involutive birational transformations of arbitrary complexity in Euclidean spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 111 EP - 117 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/ LA - en ID - CMUC_2013__54_1_a9 ER -
%0 Journal Article %A Dušek, Zdeněk %A Kowalski, Oldřich %T Involutive birational transformations of arbitrary complexity in Euclidean spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2013 %P 111-117 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/ %G en %F CMUC_2013__54_1_a9
Dušek, Zdeněk; Kowalski, Oldřich. Involutive birational transformations of arbitrary complexity in Euclidean spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 111-117. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a9/