Lonely points revisited
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 105-110
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point $p\in X$ is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space ${\mathcal G}_\omega$ from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745--748] to construct lonely points in $\omega^*$. This answers the question of P. Simon posed in our paper Lonely points in $\omega^*$, Topology Appl. 155 (2008), no. 16, 1766--1771.
Classification :
54D40, 54D80, 54G05
Keywords: $\beta\omega$; lonely point; weak P-point; irresolvable spaces
Keywords: $\beta\omega$; lonely point; weak P-point; irresolvable spaces
@article{CMUC_2013__54_1_a8,
author = {Verner, Jonathan L.},
title = {Lonely points revisited},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {105--110},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2013},
mrnumber = {3038075},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a8/}
}
Verner, Jonathan L. Lonely points revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 105-110. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a8/