Lonely points revisited
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 105-110.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point $p\in X$ is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space ${\mathcal G}_\omega$ from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745--748] to construct lonely points in $\omega^*$. This answers the question of P. Simon posed in our paper Lonely points in $\omega^*$, Topology Appl. 155 (2008), no. 16, 1766--1771.
Classification : 54D40, 54D80, 54G05
Keywords: $\beta\omega$; lonely point; weak P-point; irresolvable spaces
@article{CMUC_2013__54_1_a8,
     author = {Verner, Jonathan L.},
     title = {Lonely points revisited},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {105--110},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2013},
     mrnumber = {3038075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a8/}
}
TY  - JOUR
AU  - Verner, Jonathan L.
TI  - Lonely points revisited
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 105
EP  - 110
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a8/
LA  - en
ID  - CMUC_2013__54_1_a8
ER  - 
%0 Journal Article
%A Verner, Jonathan L.
%T Lonely points revisited
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 105-110
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a8/
%G en
%F CMUC_2013__54_1_a8
Verner, Jonathan L. Lonely points revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 105-110. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a8/