Diagonals and discrete subsets of squares
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 69-82
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In 2008 Juhász and Szentmiklóssy established that for every compact space $X$ there exists a discrete $D\subset X\times X$ with $|D|=d(X)$. We generalize this result in two directions: the first one is to prove that the same holds for any Lindelöf $\Sigma$-space $X$ and hence $X^\omega $ is $d$-separable. We give an example of a countably compact space $X$ such that $X^\omega $ is not $d$-separable. On the other hand, we show that for any Lindelöf $p$-space $X$ there exists a discrete subset $D\subset X\times X$ such that $\Delta = \{(x,x): x\in X\}\subset \overline{D}$; in particular, the diagonal $\Delta $ is a retract of $\overline{D}$ and the projection of $D$ on the first coordinate is dense in $X$. As a consequence, some properties that are not discretely reflexive in $X$ become discretely reflexive in $X\times X$. In particular, if $X$ is compact and $\overline{D}$ is Corson (Eberlein) compact for any discrete $D\subset X\times X$ then $X$ itself is Corson (Eberlein). Besides, a Lindelöf $p$-space $X$ is zero-dimensional if and only if $\overline{D}$ is zero-dimensional for any discrete $D\subset X\times X$. Under CH, we give an example of a crowded countable space $X$ such that every discrete subset of $X\times X$ is closed. In particular, the diagonal of $X$ cannot be contained in the closure of a discrete subspace of $X\times X$.
Classification :
54C10, 54C25, 54D25, 54H11
Keywords: diagonal; discrete subspaces; $d$-separable space; discrete reflexivity; Lindelöf $p$-space; Lindelöf $\Sigma $-space; finite powers; Corson compact spaces; Eberlein compact spaces; countably compact spaces
Keywords: diagonal; discrete subspaces; $d$-separable space; discrete reflexivity; Lindelöf $p$-space; Lindelöf $\Sigma $-space; finite powers; Corson compact spaces; Eberlein compact spaces; countably compact spaces
@article{CMUC_2013__54_1_a5,
author = {Burke, Dennis and Tkachuk, Vladimir V.},
title = {Diagonals and discrete subsets of squares},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {69--82},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2013},
mrnumber = {3038072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a5/}
}
TY - JOUR AU - Burke, Dennis AU - Tkachuk, Vladimir V. TI - Diagonals and discrete subsets of squares JO - Commentationes Mathematicae Universitatis Carolinae PY - 2013 SP - 69 EP - 82 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a5/ LA - en ID - CMUC_2013__54_1_a5 ER -
Burke, Dennis; Tkachuk, Vladimir V. Diagonals and discrete subsets of squares. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a5/