Diagonals and discrete subsets of squares
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 69-82.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 2008 Juhász and Szentmiklóssy established that for every compact space $X$ there exists a discrete $D\subset X\times X$ with $|D|=d(X)$. We generalize this result in two directions: the first one is to prove that the same holds for any Lindelöf $\Sigma$-space $X$ and hence $X^\omega $ is $d$-separable. We give an example of a countably compact space $X$ such that $X^\omega $ is not $d$-separable. On the other hand, we show that for any Lindelöf $p$-space $X$ there exists a discrete subset $D\subset X\times X$ such that $\Delta = \{(x,x): x\in X\}\subset \overline{D}$; in particular, the diagonal $\Delta $ is a retract of $\overline{D}$ and the projection of $D$ on the first coordinate is dense in $X$. As a consequence, some properties that are not discretely reflexive in $X$ become discretely reflexive in $X\times X$. In particular, if $X$ is compact and $\overline{D}$ is Corson (Eberlein) compact for any discrete $D\subset X\times X$ then $X$ itself is Corson (Eberlein). Besides, a Lindelöf $p$-space $X$ is zero-dimensional if and only if $\overline{D}$ is zero-dimensional for any discrete $D\subset X\times X$. Under CH, we give an example of a crowded countable space $X$ such that every discrete subset of $X\times X$ is closed. In particular, the diagonal of $X$ cannot be contained in the closure of a discrete subspace of $X\times X$.
Classification : 54C10, 54C25, 54D25, 54H11
Keywords: diagonal; discrete subspaces; $d$-separable space; discrete reflexivity; Lindelöf $p$-space; Lindelöf $\Sigma $-space; finite powers; Corson compact spaces; Eberlein compact spaces; countably compact spaces
@article{CMUC_2013__54_1_a5,
     author = {Burke, Dennis and Tkachuk, Vladimir V.},
     title = {Diagonals and discrete subsets of squares},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2013},
     mrnumber = {3038072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a5/}
}
TY  - JOUR
AU  - Burke, Dennis
AU  - Tkachuk, Vladimir V.
TI  - Diagonals and discrete subsets of squares
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 69
EP  - 82
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a5/
LA  - en
ID  - CMUC_2013__54_1_a5
ER  - 
%0 Journal Article
%A Burke, Dennis
%A Tkachuk, Vladimir V.
%T Diagonals and discrete subsets of squares
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 69-82
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a5/
%G en
%F CMUC_2013__54_1_a5
Burke, Dennis; Tkachuk, Vladimir V. Diagonals and discrete subsets of squares. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a5/