Fixed-place ideals in commutative rings
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 53-68.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $I$ be a semi-prime ideal. Then $P_\circ \in \operatorname{Min}(I)$ is called irredundant with respect to $I$ if $I\neq \bigcap_{P_\circ \neq P\in \operatorname{Min}(I)}P$. If $I$ is the intersection of all irredundant ideals with respect to $I$, it is called a fixed-place ideal. If there are no irredundant ideals with respect to $I$, it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point $p\in \beta X$ is a fixed-place point if $O^p(X)$ is a fixed-place ideal. In this situation the fixed-place rank of $p$, denoted by FP-$\operatorname{rank}_X(p)$, is defined as the cardinal of the set of all irredundant prime ideals with respect to $O^p(X)$. Let $p$ be a fixed-place point, it is shown that FP-$\operatorname{rank}_X (p)= \eta $ if and only if there is a family $\{Y_\alpha\}_{ \alpha \in A}$ of cozero sets of $X$ such that: 1- $|A|= \eta $, 2- $p\in \operatorname{cl}_{\beta X} Y_\alpha$ for each $\alpha \in A$, 3- $p\notin \operatorname{cl}_{\beta X} (Y_\alpha \cap Y_\beta )$ if $\alpha \neq \beta $ and 4- $\eta $ is the greatest cardinal with the above properties. In this case $p$ is an $F$-point with respect to $Y_\alpha $ for any $\alpha \in A$.
Classification : 13Axx, 54C40
Keywords: ring of continuous functions; fixed-place; anti fixed-place; irredundant; semi-prime; annihilator; affiliated prime; fixed-place rank; Zariski topology
@article{CMUC_2013__54_1_a4,
     author = {Aliabad, Ali Rezaei and Badie, Mehdi},
     title = {Fixed-place ideals in commutative rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {53--68},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2013},
     mrnumber = {3038071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a4/}
}
TY  - JOUR
AU  - Aliabad, Ali Rezaei
AU  - Badie, Mehdi
TI  - Fixed-place ideals in commutative rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 53
EP  - 68
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a4/
LA  - en
ID  - CMUC_2013__54_1_a4
ER  - 
%0 Journal Article
%A Aliabad, Ali Rezaei
%A Badie, Mehdi
%T Fixed-place ideals in commutative rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 53-68
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a4/
%G en
%F CMUC_2013__54_1_a4
Aliabad, Ali Rezaei; Badie, Mehdi. Fixed-place ideals in commutative rings. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 53-68. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a4/