The two-parameter class of Schröder inversions
Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 5-19.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Infinite lower triangular matrices of generalized Schröder numbers are used to construct a two-parameter class of invertible sequence transformations. Their inverses are given by triangular matrices of coordination numbers. The two-parameter class of Schröder transformations is merged into a one-parameter class of stretched Riordan arrays, the left-inverses of which consist of matrices of crystal ball numbers. Schröder and inverse Schröder transforms of important sequences are calculated.
Classification : 05A10, 05A15, 05A19
Keywords: generalized Schröder numbers; coordination numbers; crystal ball numbers; stretched Riordan array; triangular matrix; sequence transformation; inversion; left-inverse
@article{CMUC_2013__54_1_a1,
     author = {Schr\"oder, Joachim},
     title = {The two-parameter class of {Schr\"oder} inversions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2013},
     mrnumber = {3038068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a1/}
}
TY  - JOUR
AU  - Schröder, Joachim
TI  - The two-parameter class of Schröder inversions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2013
SP  - 5
EP  - 19
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a1/
LA  - en
ID  - CMUC_2013__54_1_a1
ER  - 
%0 Journal Article
%A Schröder, Joachim
%T The two-parameter class of Schröder inversions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2013
%P 5-19
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a1/
%G en
%F CMUC_2013__54_1_a1
Schröder, Joachim. The two-parameter class of Schröder inversions. Commentationes Mathematicae Universitatis Carolinae, Tome 54 (2013) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/CMUC_2013__54_1_a1/