Pseudo-homotopies of the pseudo-arc
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 4, pp. 629-635.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a continuum. Two maps $g,h:X\rightarrow X$ are said to be pseudo-homotopic provided that there exist a continuum $C$, points $s,t\in C$ and a continuous function $H:X\times C\rightarrow X$ such that for each $x\in X$, $H(x,s)=g(x)$ and $H(x,t)=h(x)$. In this paper we prove that if $P$ is the pseudo-arc, $g$ is one-to-one and $h$ is pseudo-homotopic to $g$, then $g=h$. This theorem generalizes previous results by W. Lewis and M. Sobolewski.
Classification : 54B10, 54F15, 54F50
Keywords: pseudo-arc; pseudo-contractible; pseudo-homotopy
@article{CMUC_2012__53_4_a9,
     author = {Illanes, Alejandro},
     title = {Pseudo-homotopies of the pseudo-arc},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {629--635},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2012},
     mrnumber = {3016431},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_4_a9/}
}
TY  - JOUR
AU  - Illanes, Alejandro
TI  - Pseudo-homotopies of the pseudo-arc
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2012
SP  - 629
EP  - 635
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2012__53_4_a9/
LA  - en
ID  - CMUC_2012__53_4_a9
ER  - 
%0 Journal Article
%A Illanes, Alejandro
%T Pseudo-homotopies of the pseudo-arc
%J Commentationes Mathematicae Universitatis Carolinae
%D 2012
%P 629-635
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2012__53_4_a9/
%G en
%F CMUC_2012__53_4_a9
Illanes, Alejandro. Pseudo-homotopies of the pseudo-arc. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 4, pp. 629-635. http://geodesic.mathdoc.fr/item/CMUC_2012__53_4_a9/