Quasigroups arisen by right nuclear extension
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 3, pp. 391-395
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of this paper is to prove that a quasigroup $Q$ with right unit is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by the factor quasigroup $Q/G$ if and only if there exists a normalized left transversal $\Sigma \subset Q$ to $G$ in $Q$ such that the right translations by elements of $\Sigma$ commute with all right translations by elements of the subgroup $G$. Moreover, a loop $Q$ is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by a loop if and only if $G$ is middle-nuclear, and there exists a normalized left transversal to $G$ in $Q$ contained in the commutant of $G$.
Classification :
20N05
Keywords: extension of quasigroups; right nucleus; quasigroup with right unit; transversal
Keywords: extension of quasigroups; right nucleus; quasigroup with right unit; transversal
@article{CMUC_2012__53_3_a5,
author = {Nagy, P\'eter T. and Stuhl, Izabella},
title = {Quasigroups arisen by right nuclear extension},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {391--395},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2012},
mrnumber = {3017838},
zbl = {1257.20069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_3_a5/}
}
TY - JOUR AU - Nagy, Péter T. AU - Stuhl, Izabella TI - Quasigroups arisen by right nuclear extension JO - Commentationes Mathematicae Universitatis Carolinae PY - 2012 SP - 391 EP - 395 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2012__53_3_a5/ LA - en ID - CMUC_2012__53_3_a5 ER -
Nagy, Péter T.; Stuhl, Izabella. Quasigroups arisen by right nuclear extension. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 3, pp. 391-395. http://geodesic.mathdoc.fr/item/CMUC_2012__53_3_a5/