Nonsplitting F-quasigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 3, pp. 375-381
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
T. Kepka, M.K. Kinyon and J.D. Phillips: The structure of F-quasigroups, J. Algebra 317 (2007), no. 2, 435--461 developed a connection between F-quasigroups and NK-loops. Since NK-loops are contained in the variety generated by groups and commutative Moufang loops, a question that arises is whether or not there exists a nonsplit NK-loop and likewise a nonsplit F-quasigroup. Here we prove that there do indeed exist nonsplit F-quasigroups and show that there are exactly four corresponding nonsplit NK-loops of minimal order $3^6$.
@article{CMUC_2012__53_3_a3,
author = {Gagola III, Stephen},
title = {Nonsplitting {F-quasigroups}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {375--381},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2012},
mrnumber = {3017836},
zbl = {1257.20068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_3_a3/}
}
Gagola III, Stephen. Nonsplitting F-quasigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 3, pp. 375-381. http://geodesic.mathdoc.fr/item/CMUC_2012__53_3_a3/