Metrization of function spaces with the Fell topology
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 307-318
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a Tychonoff space $X$, let $\downarrow {\rm C}_F(X)$ be the family of hypographs of all continuous maps from $X$ to $[0,1]$ endowed with the Fell topology. It is proved that $X$ has a dense separable metrizable locally compact open subset if $\downarrow {\rm C}_F(X)$ is metrizable. Moreover, for a first-countable space $X$, $\downarrow {\rm C}_F(X)$ is metrizable if and only if $X$ itself is a locally compact separable metrizable space. There exists a Tychonoff space $X$ such that $\downarrow {\rm C}_F(X)$ is metrizable but $X$ is not first-countable.
Classification :
54B20, 54C35, 54E45
Keywords: space of continuous maps; Fell topology; hyperspace; metrizable; hypograph; separable; first-countable
Keywords: space of continuous maps; Fell topology; hyperspace; metrizable; hypograph; separable; first-countable
@article{CMUC_2012__53_2_a9,
author = {Yang, Hanbiao},
title = {Metrization of function spaces with the {Fell} topology},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {307--318},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2012},
mrnumber = {3017261},
zbl = {1265.54093},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a9/}
}
Yang, Hanbiao. Metrization of function spaces with the Fell topology. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 307-318. http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a9/