A very general covering property
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 281-306.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce a general notion of covering property, of which many classical definitions are particular instances. Notions of closure under various sorts of convergence, or, more generally, under taking kinds of accumulation points, are shown to be equivalent to a covering property in the sense considered here (Corollary 3.10). Conversely, every covering property is equivalent to the existence of appropriate kinds of accumulation points for arbitrary sequences on some fixed index set (Corollary 3.5). We discuss corresponding notions related to sequential compactness, and to pseudocompactness, or, more generally, properties connected with the existence of limit points of sequences of subsets. In spite of the great generality of our treatment, many results here appear to be new even in very special cases, such as $D$-compactness and $D$-pseudocompactness, for $D$ an ultrafilter, and weak (quasi) $M$-(pseudo)-compactness, for $M$ a set of ultrafilters, as well as for $[\beta ,\alpha ]$-compactness, with $\beta$ and $\alpha$ ordinals.
Classification : 54A20, 54D20
Keywords: covering property; subcover; compactness; accumulation point; convergence; pseudocompactness; limit point
@article{CMUC_2012__53_2_a8,
     author = {Lipparini, Paolo},
     title = {A very general covering property},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {281--306},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2012},
     mrnumber = {3017260},
     zbl = {1265.54104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a8/}
}
TY  - JOUR
AU  - Lipparini, Paolo
TI  - A very general covering property
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2012
SP  - 281
EP  - 306
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a8/
LA  - en
ID  - CMUC_2012__53_2_a8
ER  - 
%0 Journal Article
%A Lipparini, Paolo
%T A very general covering property
%J Commentationes Mathematicae Universitatis Carolinae
%D 2012
%P 281-306
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a8/
%G en
%F CMUC_2012__53_2_a8
Lipparini, Paolo. A very general covering property. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 281-306. http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a8/