$G$-nilpotent units of commutative group rings
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 179-187.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose $R$ is a commutative unital ring and $G$ is an abelian group. We give a general criterion only in terms of $R$ and $G$ when all normalized units in the commutative group ring $RG$ are $G$-nilpotent. This extends recent results published in [Extracta Math., 2008--2009] and [Ann. Sci. Math. Québec, 2009].
Classification : 16S34, 16U60, 20K10, 20K20, 20K21
Keywords: group rings; normalized units; nilpotents; idempotents; decompositions; abelian groups
@article{CMUC_2012__53_2_a1,
     author = {Danchev, Peter},
     title = {$G$-nilpotent units of commutative group rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {179--187},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2012},
     mrnumber = {3017253},
     zbl = {1255.16042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a1/}
}
TY  - JOUR
AU  - Danchev, Peter
TI  - $G$-nilpotent units of commutative group rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2012
SP  - 179
EP  - 187
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a1/
LA  - en
ID  - CMUC_2012__53_2_a1
ER  - 
%0 Journal Article
%A Danchev, Peter
%T $G$-nilpotent units of commutative group rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2012
%P 179-187
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a1/
%G en
%F CMUC_2012__53_2_a1
Danchev, Peter. $G$-nilpotent units of commutative group rings. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 179-187. http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a1/