$G$-nilpotent units of commutative group rings
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 179-187
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose $R$ is a commutative unital ring and $G$ is an abelian group. We give a general criterion only in terms of $R$ and $G$ when all normalized units in the commutative group ring $RG$ are $G$-nilpotent. This extends recent results published in [Extracta Math., 2008--2009] and [Ann. Sci. Math. Québec, 2009].
Classification :
16S34, 16U60, 20K10, 20K20, 20K21
Keywords: group rings; normalized units; nilpotents; idempotents; decompositions; abelian groups
Keywords: group rings; normalized units; nilpotents; idempotents; decompositions; abelian groups
@article{CMUC_2012__53_2_a1,
author = {Danchev, Peter},
title = {$G$-nilpotent units of commutative group rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {179--187},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2012},
mrnumber = {3017253},
zbl = {1255.16042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a1/}
}
Danchev, Peter. $G$-nilpotent units of commutative group rings. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 2, pp. 179-187. http://geodesic.mathdoc.fr/item/CMUC_2012__53_2_a1/