Topology on ordered fields
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 139-147.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An ordered field is a field which has a linear order and the order topology by this order. For a subfield $F$ of an ordered field, we give characterizations for $F$ to be Dedekind-complete or Archimedean in terms of the order topology and the subspace topology on $F$.
Classification : 12J15, 54A10, 54F05
Keywords: order topology; subspace topology; ordered field; Archimedes' axiom; axiom of continuity
@article{CMUC_2012__53_1_a9,
     author = {Tanaka, Yoshio},
     title = {Topology on ordered fields},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2012},
     mrnumber = {2880916},
     zbl = {1249.54072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a9/}
}
TY  - JOUR
AU  - Tanaka, Yoshio
TI  - Topology on ordered fields
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2012
SP  - 139
EP  - 147
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a9/
LA  - en
ID  - CMUC_2012__53_1_a9
ER  - 
%0 Journal Article
%A Tanaka, Yoshio
%T Topology on ordered fields
%J Commentationes Mathematicae Universitatis Carolinae
%D 2012
%P 139-147
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a9/
%G en
%F CMUC_2012__53_1_a9
Tanaka, Yoshio. Topology on ordered fields. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 139-147. http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a9/