Topology on ordered fields
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 139-147
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
An ordered field is a field which has a linear order and the order topology by this order. For a subfield $F$ of an ordered field, we give characterizations for $F$ to be Dedekind-complete or Archimedean in terms of the order topology and the subspace topology on $F$.
Classification :
12J15, 54A10, 54F05
Keywords: order topology; subspace topology; ordered field; Archimedes' axiom; axiom of continuity
Keywords: order topology; subspace topology; ordered field; Archimedes' axiom; axiom of continuity
@article{CMUC_2012__53_1_a9,
author = {Tanaka, Yoshio},
title = {Topology on ordered fields},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {139--147},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2012},
mrnumber = {2880916},
zbl = {1249.54072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a9/}
}
Tanaka, Yoshio. Topology on ordered fields. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 139-147. http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a9/