Singular points of order $k$ of Clarke regular and arbitrary functions
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 51-63
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $X$ be a separable Banach space and $f$ a locally Lipschitz real function on $X$. For $k\in \mathbb N$, let $\Sigma_k(f)$ be the set of points $x\in X$, at which the Clarke subdifferential $\partial^Cf(x)$ is at least $k$-dimensional. It is well-known that if $f$ is convex or semiconvex (semiconcave), then $\Sigma_k(f)$ can be covered by countably many Lipschitz surfaces of codimension $k$. We show that this result holds even for each Clarke regular function (and so also for each approximately convex function). Motivated by a resent result of A.D. Ioffe, we prove also two results on arbitrary functions, which work with Hadamard directional derivatives and can be considered as generalizations of our theorem on $\Sigma_k(f)$ of Clarke regular functions (since each of them easily implies this theorem).
Classification :
26B25, 49J52
Keywords: Clarke regular functions; singularities; Hadamard derivative
Keywords: Clarke regular functions; singularities; Hadamard derivative
@article{CMUC_2012__53_1_a3,
author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
title = {Singular points of order $k$ of {Clarke} regular and arbitrary functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {51--63},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2012},
mrnumber = {2880910},
zbl = {1249.49021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a3/}
}
TY - JOUR AU - Zajíček, Luděk TI - Singular points of order $k$ of Clarke regular and arbitrary functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2012 SP - 51 EP - 63 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a3/ LA - en ID - CMUC_2012__53_1_a3 ER -
Zajíček, Luděk. Singular points of order $k$ of Clarke regular and arbitrary functions. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 51-63. http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a3/