Mesocompactness and selection theory
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 149-157.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A topological space $X$ is called mesocompact (sequentially mesocompact) if for every open cover ${\mathcal U}$ of $X$, there exists an open refinement ${\mathcal V}$ of ${\mathcal U}$ such that $\{V\in {\mathcal V}: V\cap K\neq \emptyset\}$ is finite for every compact set (converging sequence including its limit point) $K$ in $X$. In this paper, we give some characterizations of mesocompact (sequentially mesocompact) spaces using selection theory.
Classification : 54C60, 54C65
Keywords: selections; l.s.c. set-valued maps; mesocompact; sequentially mesocompact; persevering compact set-valued maps
@article{CMUC_2012__53_1_a10,
     author = {Yan, Peng-fei and Yang, Zhongqiang},
     title = {Mesocompactness and selection theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2012},
     mrnumber = {2880917},
     zbl = {1249.54046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a10/}
}
TY  - JOUR
AU  - Yan, Peng-fei
AU  - Yang, Zhongqiang
TI  - Mesocompactness and selection theory
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2012
SP  - 149
EP  - 157
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a10/
LA  - en
ID  - CMUC_2012__53_1_a10
ER  - 
%0 Journal Article
%A Yan, Peng-fei
%A Yang, Zhongqiang
%T Mesocompactness and selection theory
%J Commentationes Mathematicae Universitatis Carolinae
%D 2012
%P 149-157
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a10/
%G en
%F CMUC_2012__53_1_a10
Yan, Peng-fei; Yang, Zhongqiang. Mesocompactness and selection theory. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 149-157. http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a10/