Symplectic Killing spinors
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 19-35.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla$. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric.
Classification : 53C07, 58J60
Keywords: Fedosov manifolds; symplectic spinors; symplectic Killing spinors; symplectic Dirac operators; Segal-Shale-Weil representation
@article{CMUC_2012__53_1_a1,
     author = {Kr\'ysl, Svatopluk},
     title = {Symplectic {Killing} spinors},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {19--35},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2012},
     mrnumber = {2880908},
     zbl = {1249.53093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a1/}
}
TY  - JOUR
AU  - Krýsl, Svatopluk
TI  - Symplectic Killing spinors
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2012
SP  - 19
EP  - 35
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a1/
LA  - en
ID  - CMUC_2012__53_1_a1
ER  - 
%0 Journal Article
%A Krýsl, Svatopluk
%T Symplectic Killing spinors
%J Commentationes Mathematicae Universitatis Carolinae
%D 2012
%P 19-35
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a1/
%G en
%F CMUC_2012__53_1_a1
Krýsl, Svatopluk. Symplectic Killing spinors. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 19-35. http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a1/