Berezin transform for non-scalar holomorphic discrete series
Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 1-17
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $M=G/K$ be a Hermitian symmetric space of the non-compact type and let $\pi$ be a discrete series representation of $G$ which is holomorphically induced from a unitary irreducible representation $\rho$ of $K$. In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of $\pi$. Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with $\pi$.
Classification :
22E46, 32M10, 32M15, 81S10
Keywords: Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; discrete series representation; Hermitian symmetric space of the non-compact type; semi-simple non-compact Lie group; coherent states; reproducing kernel; adjoint orbit
Keywords: Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; discrete series representation; Hermitian symmetric space of the non-compact type; semi-simple non-compact Lie group; coherent states; reproducing kernel; adjoint orbit
@article{CMUC_2012__53_1_a0,
author = {Cahen, Benjamin},
title = {Berezin transform for non-scalar holomorphic discrete series},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--17},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2012},
mrnumber = {2880907},
zbl = {1249.22008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a0/}
}
TY - JOUR AU - Cahen, Benjamin TI - Berezin transform for non-scalar holomorphic discrete series JO - Commentationes Mathematicae Universitatis Carolinae PY - 2012 SP - 1 EP - 17 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a0/ LA - en ID - CMUC_2012__53_1_a0 ER -
Cahen, Benjamin. Berezin transform for non-scalar holomorphic discrete series. Commentationes Mathematicae Universitatis Carolinae, Tome 53 (2012) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/CMUC_2012__53_1_a0/