Maximal free sequences in a Boolean algebra
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 593-610.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study free sequences and related notions on Boolean algebras. A free sequence on a BA $A$ is a sequence $\langle a_\xi:\xi \alpha \rangle$ of elements of $A$, with $\alpha$ an ordinal, such that for all $F,G\in[\alpha]^{\omega}$ with $F$ we have $\prod_{\xi\in F}a_\xi\cdot \prod_{\xi\in G}-a_\xi \not=0$. A free sequence of length $\alpha$ exists iff the Stone space $\operatorname{Ult}(A)$ has a free sequence of length $\alpha $ in the topological sense. A free sequence is maximal iff it cannot be extended at the end to a longer free sequence. The main notions studied here are the spectrum function $$ {\frak f}_{\operatorname{sp}}(A)=\{|\alpha|:A\hbox{ has an infinite maximal free sequence of length }\alpha \} $$ and the associated min-max function $$ {\frak f}(A)=\min({\frak f}_{\operatorname{sp}}(A)). $$ Among the results are: for infinite cardinals $\kappa\leq\lambda$ there is a BA $A$ such that ${\frak f}_{\operatorname{sp}}(A)$ is the collection of all cardinals $\mu$ with $\kappa\leq\mu\leq\lambda$; maximal free sequences in $A$ give rise to towers in homomorphic images of $A$; a characterization of ${\frak f}_{\operatorname{sp}}(A)$ for $A$ a weak product of free BAs; ${\frak p}(A), \pi\chi_{\inf}(A)\leq{\frak f}(A)$ for $A$ atomless; a characterization of infinite BAs whose Stone spaces have an infinite maximal free sequence; a generalization of free sequences to free chains over any linearly ordered set, and the relationship of this generalization to the supremum of lengths of homomorphic images.
Classification : 06E05, 06E15, 54A25
Keywords: free sequences; cardinal functions; Boolean algebras
@article{CMUC_2011__52_4_a9,
     author = {Monk, J. D.},
     title = {Maximal free sequences in a {Boolean} algebra},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {593--610},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2011},
     mrnumber = {2864001},
     zbl = {1249.06034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a9/}
}
TY  - JOUR
AU  - Monk, J. D.
TI  - Maximal free sequences in a Boolean algebra
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 593
EP  - 610
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a9/
LA  - en
ID  - CMUC_2011__52_4_a9
ER  - 
%0 Journal Article
%A Monk, J. D.
%T Maximal free sequences in a Boolean algebra
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 593-610
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a9/
%G en
%F CMUC_2011__52_4_a9
Monk, J. D. Maximal free sequences in a Boolean algebra. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 593-610. http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a9/