Manifold-valued generalized functions in full Colombeau spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 519-534.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions.
Classification : 26E15, 46F30, 46T30
Keywords: algebras of generalized functions; manifold-valued generalized functions; full Colombeau algebras
@article{CMUC_2011__52_4_a4,
     author = {Kunzinger, Michael and Nigsch, Eduard},
     title = {Manifold-valued generalized functions in full {Colombeau} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {519--534},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2011},
     mrnumber = {2863996},
     zbl = {1249.46042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a4/}
}
TY  - JOUR
AU  - Kunzinger, Michael
AU  - Nigsch, Eduard
TI  - Manifold-valued generalized functions in full Colombeau spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 519
EP  - 534
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a4/
LA  - en
ID  - CMUC_2011__52_4_a4
ER  - 
%0 Journal Article
%A Kunzinger, Michael
%A Nigsch, Eduard
%T Manifold-valued generalized functions in full Colombeau spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 519-534
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a4/
%G en
%F CMUC_2011__52_4_a4
Kunzinger, Michael; Nigsch, Eduard. Manifold-valued generalized functions in full Colombeau spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 519-534. http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a4/