$C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 507-517
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the $C^1$-continuity property of these operators over Sobolev-type spaces of periodic functions.
Classification :
46E30, 47H99
Keywords: Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness
Keywords: Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness
@article{CMUC_2011__52_4_a3,
author = {Kmit, I.},
title = {$C^1$-smoothness of {Nemytskii} operators on {Sobolev-type} spaces of periodic functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {507--517},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2011},
mrnumber = {2863995},
zbl = {1247.47044},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a3/}
}
TY - JOUR AU - Kmit, I. TI - $C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 2011 SP - 507 EP - 517 VL - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a3/ LA - en ID - CMUC_2011__52_4_a3 ER -
Kmit, I. $C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 507-517. http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a3/