$C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 507-517.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the $C^1$-continuity property of these operators over Sobolev-type spaces of periodic functions.
Classification : 46E30, 47H99
Keywords: Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness
@article{CMUC_2011__52_4_a3,
     author = {Kmit, I.},
     title = {$C^1$-smoothness of {Nemytskii} operators on {Sobolev-type} spaces of periodic functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {507--517},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2011},
     mrnumber = {2863995},
     zbl = {1247.47044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a3/}
}
TY  - JOUR
AU  - Kmit, I.
TI  - $C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 507
EP  - 517
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a3/
LA  - en
ID  - CMUC_2011__52_4_a3
ER  - 
%0 Journal Article
%A Kmit, I.
%T $C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 507-517
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a3/
%G en
%F CMUC_2011__52_4_a3
Kmit, I. $C^1$-smoothness of Nemytskii operators on Sobolev-type spaces of periodic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 507-517. http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a3/