Commutative subloop-free loops
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 473-484
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We describe, in a constructive way, a family of commutative loops of odd order, $n\geq 7$, which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group $\mathcal{A}_n$.
@article{CMUC_2011__52_4_a0,
author = {Beaudry, Martin and Marchand, Louis},
title = {Commutative subloop-free loops},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {473--484},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2011},
mrnumber = {2863992},
zbl = {1249.20078},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a0/}
}
Beaudry, Martin; Marchand, Louis. Commutative subloop-free loops. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 4, pp. 473-484. http://geodesic.mathdoc.fr/item/CMUC_2011__52_4_a0/