A note on coclones of topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 403-416.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The clone of a topological space is known to have a strictly more expressive first-order language than that of the monoid of continuous self-maps. The current paper studies coclones of topological spaces (i.e. clones in the category dual to that of topological spaces and continuous maps) and proves that, in contrast to clones, the first-order properties of coclones cannot express anything more than those of the monoid, except for the case of discrete and indiscrete spaces.
Classification : 08A68, 54H15
Keywords: clone; coclone; monoid of continuous self-maps; clone theory; monoid theory
@article{CMUC_2011__52_3_a6,
     author = {Barkhudaryan, Artur},
     title = {A note on coclones of topological spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {403--416},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2011},
     mrnumber = {2843232},
     zbl = {1249.54073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a6/}
}
TY  - JOUR
AU  - Barkhudaryan, Artur
TI  - A note on coclones of topological spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 403
EP  - 416
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a6/
LA  - en
ID  - CMUC_2011__52_3_a6
ER  - 
%0 Journal Article
%A Barkhudaryan, Artur
%T A note on coclones of topological spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 403-416
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a6/
%G en
%F CMUC_2011__52_3_a6
Barkhudaryan, Artur. A note on coclones of topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 403-416. http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a6/