Uncountably many solutions of a system of third order nonlinear differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 369-389.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations $$ \aligned \frac{d}{dt}\Big\{r_i(t)\frac{d}{dt}\Big[\lambda_i(t)\frac{d}{dt} \Big(x_i(t)-f_i(t,x_1(t-\sigma_{i1}),x_2(t-\sigma_{i2}), x_3(t-\sigma_{i3}))\Big)\Big]\Big\} \cr \qquad \quad + \frac{d}{dt}\Big[r_i(t)\frac{d}{dt}g_i(t,x_1(p_{i1}(t)), x_2(p_{i2}(t)),x_3(p_{i3}(t)))\Big] \cr \qquad \quad + \frac{d}{dt}h_i(t,x_1(q_{i1}(t)),x_2(q_{i2}(t)), x_3(q_{i3}(t))) \cr = l_i(t,x_1(\eta_{i1}(t)),x_2(\eta_{i2}(t)),x_3(\eta_{i3}(t))), \quad t\ge t_0,\quad i\in \{1,2,3\} \endaligned $$ in the following bounded closed and convex set $$ \aligned \Omega(a,b)=\Big\{x(t)=\big(x_1(t),x_2(t),x_3(t)\big)\in C([t_0,+\infty),\Bbb{R}^3):a(t)\le x_i(t)\le b(t), \qquad \forall\, t\geq t_0, i\in\{1,2,3\}\Big\}, \qquad \endaligned $$ where $\sigma_{ij}>0$, $r_i,\lambda_i,a,b\in C([t_0,+\infty),\Bbb{R}^{+})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty)\times\Bbb{R}^3,\Bbb{R})$, \newline $p_{ij},q_{ij},\eta_{ij}\in C([t_0,+\infty),\Bbb{R})$ for $i,j\in\{1,2,3\}$. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.
Classification : 34C10, 34K15
Keywords: system of third order nonlinear neutral delay differential equations; contraction mapping; completely continuous mapping; condensing mapping; uncountably many bounded positive solutions
@article{CMUC_2011__52_3_a4,
     author = {Liu, Min},
     title = {Uncountably many solutions of a system  of third order nonlinear differential equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {369--389},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2011},
     mrnumber = {2843230},
     zbl = {1249.34199},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a4/}
}
TY  - JOUR
AU  - Liu, Min
TI  - Uncountably many solutions of a system  of third order nonlinear differential equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 369
EP  - 389
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a4/
LA  - en
ID  - CMUC_2011__52_3_a4
ER  - 
%0 Journal Article
%A Liu, Min
%T Uncountably many solutions of a system  of third order nonlinear differential equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 369-389
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a4/
%G en
%F CMUC_2011__52_3_a4
Liu, Min. Uncountably many solutions of a system  of third order nonlinear differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 369-389. http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a4/