Characterization of power digraphs modulo $n$
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 359-367.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A power digraph modulo $n$, denoted by $G(n,k)$, is a directed graph with $Z_{n}=\{0,1,\dots, n-1\}$ as the set of vertices and $E=\{(a,b): a^{k}\equiv b\pmod n\}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper we find necessary and sufficient conditions on $n$ and $k$ such that the digraph $G(n,k)$ has at least one isolated fixed point. We also establish necessary and sufficient conditions on $n$ and $k$ such that the digraph $G(n,k)$ contains exactly two components. The primality of Fermat number is also discussed.
Classification : 05C20, 11A07, 11A15, 11A51, 20K01
Keywords: iteration digraph; isolated fixed points; Charmichael lambda function; Fermat numbers; Regular digraphs
@article{CMUC_2011__52_3_a3,
     author = {Ahmad, Uzma and Husnine, Syed},
     title = {Characterization of power digraphs modulo $n$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {359--367},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2011},
     mrnumber = {2843229},
     zbl = {1249.11002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a3/}
}
TY  - JOUR
AU  - Ahmad, Uzma
AU  - Husnine, Syed
TI  - Characterization of power digraphs modulo $n$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 359
EP  - 367
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a3/
LA  - en
ID  - CMUC_2011__52_3_a3
ER  - 
%0 Journal Article
%A Ahmad, Uzma
%A Husnine, Syed
%T Characterization of power digraphs modulo $n$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 359-367
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a3/
%G en
%F CMUC_2011__52_3_a3
Ahmad, Uzma; Husnine, Syed. Characterization of power digraphs modulo $n$. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 359-367. http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a3/