On $\pi$-caliber and an application of Prikry's partial order
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 463-471.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the concept of $\pi$-caliber as an alternative to the well known concept of caliber. $\pi$-caliber and caliber values coincide for regular cardinals greater than or equal to the Souslin number of a space. Unlike caliber, $\pi$-caliber may take on values below the Souslin number of a space. Under Martin's axiom, $2^{\omega }$ is a $\pi$-caliber of $\mathbb{N}^{\ast}$. Prikry's poset is used to settle a problem by Fedeli regarding possible values of very weak caliber.
Classification : 03E35, 54A15, 54A38
Keywords: nowhere dense; point-$\kappa $ family; $\pi $-caliber
@article{CMUC_2011__52_3_a11,
     author = {Szymanski, Andrzej},
     title = {On $\pi$-caliber and an application of {Prikry's} partial order},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {463--471},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2011},
     mrnumber = {2843237},
     zbl = {1249.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a11/}
}
TY  - JOUR
AU  - Szymanski, Andrzej
TI  - On $\pi$-caliber and an application of Prikry's partial order
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 463
EP  - 471
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a11/
LA  - en
ID  - CMUC_2011__52_3_a11
ER  - 
%0 Journal Article
%A Szymanski, Andrzej
%T On $\pi$-caliber and an application of Prikry's partial order
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 463-471
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a11/
%G en
%F CMUC_2011__52_3_a11
Szymanski, Andrzej. On $\pi$-caliber and an application of Prikry's partial order. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 3, pp. 463-471. http://geodesic.mathdoc.fr/item/CMUC_2011__52_3_a11/