Comparison game on Borel ideals
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 2, pp. 191-204.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We propose and study a “classification” of Borel ideals based on a natural infinite game involving a pair of ideals. The game induces a pre-order $\sqsubseteq$ and the corresponding equivalence relation. The pre-order is well founded and “almost linear”. We concentrate on $F_{\sigma}$ and $F_{\sigma\delta}$ ideals. In particular, we show that all $F_{\sigma}$-ideals are $\sqsubseteq$-equivalent and form the least equivalence class. There is also a least class of non-$F_{\sigma}$ Borel ideals, and there are at least two distinct classes of $F_{\sigma\delta}$ non-$F_{\sigma}$ ideals.
Classification : 03E05, 03E15
Keywords: ideals on countable sets; comparison game; Tukey order; games on integers
@article{CMUC_2011__52_2_a2,
     author = {Hru\v{s}\'ak, Michael and Meza-Alc\'antara, David},
     title = {Comparison game on {Borel} ideals},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {191--204},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2011},
     mrnumber = {2849045},
     zbl = {1240.03023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_2_a2/}
}
TY  - JOUR
AU  - Hrušák, Michael
AU  - Meza-Alcántara, David
TI  - Comparison game on Borel ideals
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 191
EP  - 204
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_2_a2/
LA  - en
ID  - CMUC_2011__52_2_a2
ER  - 
%0 Journal Article
%A Hrušák, Michael
%A Meza-Alcántara, David
%T Comparison game on Borel ideals
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 191-204
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_2_a2/
%G en
%F CMUC_2011__52_2_a2
Hrušák, Michael; Meza-Alcántara, David. Comparison game on Borel ideals. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 2, pp. 191-204. http://geodesic.mathdoc.fr/item/CMUC_2011__52_2_a2/