$\omega $--weighted holomorphic Besov spaces on the unit ball in $C^n$
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 37-56
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The $\omega$-weighted Besov spaces of holomorphic functions on the unit ball $B^n$ in $C^n$ are introduced as follows. Given a function $\omega $ of regular variation and $0 p \infty $, a function $f$ holomorphic in $B^n$ is said to belong to the Besov space $B_p(\omega)$ if $$ \Vert f\Vert^p_{B_p(\omega )}=\int_{B^n} (1-|z|^2)^p|Df(z)|^p \frac{\omega(1-|z|)}{(1-|z|^2)^{n+1}}\,d\nu(z) +\infty , $$ where $d\nu (z)$ is the volume measure on $B^n$ and $D$ stands for the fractional derivative of $f$. The holomorphic Besov space is described in the terms of the corresponding $L_p(\omega )$ space. Some projection theorems and theorems on existence of the inversions of these projections are proved. Also, explicit descriptions of the duals of the considered Besov spaces are given.
Classification :
32C37, 46E15, 46T25, 47B38
Keywords: weighted Besov spaces; unit ball; projection
Keywords: weighted Besov spaces; unit ball; projection
@article{CMUC_2011__52_1_a3,
author = {Harutyunyan, A. V. and Lusky, W.},
title = {$\omega $--weighted holomorphic {Besov} spaces on the unit ball in $C^n$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {37--56},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2011},
mrnumber = {2828371},
zbl = {1240.32017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a3/}
}
TY - JOUR AU - Harutyunyan, A. V. AU - Lusky, W. TI - $\omega $--weighted holomorphic Besov spaces on the unit ball in $C^n$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2011 SP - 37 EP - 56 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a3/ LA - en ID - CMUC_2011__52_1_a3 ER -
%0 Journal Article %A Harutyunyan, A. V. %A Lusky, W. %T $\omega $--weighted holomorphic Besov spaces on the unit ball in $C^n$ %J Commentationes Mathematicae Universitatis Carolinae %D 2011 %P 37-56 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a3/ %G en %F CMUC_2011__52_1_a3
Harutyunyan, A. V.; Lusky, W. $\omega $--weighted holomorphic Besov spaces on the unit ball in $C^n$. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 37-56. http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a3/