Pcf theory and cardinal invariants of the reals
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 153-162.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The additivity spectrum $\operatorname{ADD}(\mathcal{I})$ of an ideal $\mathcal{I}\subset \mathcal{P}(I)$ is the set of all regular cardinals $\kappa$ such that there is an increasing chain $\{A_\alpha:\alpha\kappa\}\subset \mathcal{I}$ with $\bigcup_{\alpha\kappa}A_\alpha\notin \mathcal{I}$. We investigate which set $A$ of regular cardinals can be the additivity spectrum of certain ideals. Assume that $\mathcal{I}=\mathcal{B}$ or $\mathcal{I}=\mathcal{N}$, where $\mathcal{B}$ denotes the ${\sigma}$-ideal generated by the compact subsets of the Baire space $\omega^\omega$, and $\mathcal{N}$ is the ideal of the null sets. We show that if $A$ is a non-empty progressive set of uncountable regular cardinals and $\operatorname{pcf}(A)=A$, then $\operatorname{ADD}(\mathcal{I})=A$ in some c.c.c generic extension of the ground model. On the other hand, we also show that if $A$ is a countable subset of $\operatorname{ADD}(\mathcal{I})$, then $\operatorname{pcf}(A)\subset \operatorname{ADD}(\mathcal{I})$. For countable sets these results give a full characterization of the additivity spectrum of $\mathcal{I}$: a non-empty countable set $A$ of uncountable regular cardinals can be $\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension iff $A=\operatorname{pcf}(A)$.
Classification : 03E04, 03E17, 03E35
Keywords: cardinal invariants; reals; pcf theory; null sets; meager sets; Baire space; additivity
@article{CMUC_2011__52_1_a11,
     author = {Soukup, Lajos},
     title = {Pcf theory and cardinal invariants of the reals},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {153--162},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2011},
     mrnumber = {2828366},
     zbl = {1240.03021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a11/}
}
TY  - JOUR
AU  - Soukup, Lajos
TI  - Pcf theory and cardinal invariants of the reals
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 153
EP  - 162
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a11/
LA  - en
ID  - CMUC_2011__52_1_a11
ER  - 
%0 Journal Article
%A Soukup, Lajos
%T Pcf theory and cardinal invariants of the reals
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 153-162
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a11/
%G en
%F CMUC_2011__52_1_a11
Soukup, Lajos. Pcf theory and cardinal invariants of the reals. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 153-162. http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a11/