Pcf theory and cardinal invariants of the reals
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 153-162
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The additivity spectrum $\operatorname{ADD}(\mathcal{I})$ of an ideal $\mathcal{I}\subset \mathcal{P}(I)$ is the set of all regular cardinals $\kappa$ such that there is an increasing chain $\{A_\alpha:\alpha\kappa\}\subset \mathcal{I}$ with $\bigcup_{\alpha\kappa}A_\alpha\notin \mathcal{I}$. We investigate which set $A$ of regular cardinals can be the additivity spectrum of certain ideals. Assume that $\mathcal{I}=\mathcal{B}$ or $\mathcal{I}=\mathcal{N}$, where $\mathcal{B}$ denotes the ${\sigma}$-ideal generated by the compact subsets of the Baire space $\omega^\omega$, and $\mathcal{N}$ is the ideal of the null sets. We show that if $A$ is a non-empty progressive set of uncountable regular cardinals and $\operatorname{pcf}(A)=A$, then $\operatorname{ADD}(\mathcal{I})=A$ in some c.c.c generic extension of the ground model. On the other hand, we also show that if $A$ is a countable subset of $\operatorname{ADD}(\mathcal{I})$, then $\operatorname{pcf}(A)\subset \operatorname{ADD}(\mathcal{I})$. For countable sets these results give a full characterization of the additivity spectrum of $\mathcal{I}$: a non-empty countable set $A$ of uncountable regular cardinals can be $\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension iff $A=\operatorname{pcf}(A)$.
Classification :
03E04, 03E17, 03E35
Keywords: cardinal invariants; reals; pcf theory; null sets; meager sets; Baire space; additivity
Keywords: cardinal invariants; reals; pcf theory; null sets; meager sets; Baire space; additivity
@article{CMUC_2011__52_1_a11,
author = {Soukup, Lajos},
title = {Pcf theory and cardinal invariants of the reals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {153--162},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2011},
mrnumber = {2828366},
zbl = {1240.03021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a11/}
}
Soukup, Lajos. Pcf theory and cardinal invariants of the reals. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 153-162. http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a11/