On weakly $s$-permutably embedded subgroups
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 21-29.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\leq H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups.
Classification : 20D10, 20D20
Keywords: weakly $s$-permutably embedded subgroups; $p$-nilpotent; $n$-maximal subgroup
@article{CMUC_2011__52_1_a1,
     author = {Li, Changwen},
     title = {On weakly $s$-permutably embedded subgroups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2011},
     mrnumber = {2828373},
     zbl = {1222.20014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a1/}
}
TY  - JOUR
AU  - Li, Changwen
TI  - On weakly $s$-permutably embedded subgroups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 21
EP  - 29
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a1/
LA  - en
ID  - CMUC_2011__52_1_a1
ER  - 
%0 Journal Article
%A Li, Changwen
%T On weakly $s$-permutably embedded subgroups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 21-29
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a1/
%G en
%F CMUC_2011__52_1_a1
Li, Changwen. On weakly $s$-permutably embedded subgroups. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a1/