A length bound for binary equality words
Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 1-20.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $w$ be an equality word of two binary non-periodic morphisms $g,h: \{a,b\}^* \to \Delta^*$ with unique overflows. It is known that if $w$ contains at least 25 occurrences of each of the letters $a$ and $b$, then it has to have one of the following special forms: up to the exchange of the letters $a$ and $b$ either $w=(ab)^ia$, or $w=a^ib^j$ with $\operatorname{gcd} (i,j)=1$. We will generalize the result, justify this bound and prove that it can be lowered to nine occurrences of each of the letters $a$ and $b$.
Classification : 68R15
Keywords: combinatorics on words; binary equality languages
@article{CMUC_2011__52_1_a0,
     author = {Hadravov\'a, Jana},
     title = {A length bound for binary equality words},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2011},
     mrnumber = {2828362},
     zbl = {1240.68162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a0/}
}
TY  - JOUR
AU  - Hadravová, Jana
TI  - A length bound for binary equality words
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2011
SP  - 1
EP  - 20
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a0/
LA  - en
ID  - CMUC_2011__52_1_a0
ER  - 
%0 Journal Article
%A Hadravová, Jana
%T A length bound for binary equality words
%J Commentationes Mathematicae Universitatis Carolinae
%D 2011
%P 1-20
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a0/
%G en
%F CMUC_2011__52_1_a0
Hadravová, Jana. A length bound for binary equality words. Commentationes Mathematicae Universitatis Carolinae, Tome 52 (2011) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/CMUC_2011__52_1_a0/