The Kadison problem on a class of commutative Banach algebras with closed cone
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 631-637.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra $A$ that all of its squares are positive and satisfying the following property: Every continuous bilinear map $\Phi $ from $A\times A$ into an arbitrary Banach space $B$ such that $\Phi(a,b)=0$ whenever $ab=0$, satisfies the condition $\Phi (ab,c)=\Phi(a,bc)$ for all $a,b,c\in A$.
Classification : 06F25, 13N05, 47B65
Keywords: derivation; local derivation
@article{CMUC_2010__51_4_a7,
     author = {Toumi, M. A.},
     title = {The {Kadison} problem on a class  of commutative {Banach} algebras with closed cone},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {631--637},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2010},
     mrnumber = {2858266},
     zbl = {1224.06035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a7/}
}
TY  - JOUR
AU  - Toumi, M. A.
TI  - The Kadison problem on a class  of commutative Banach algebras with closed cone
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 631
EP  - 637
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a7/
LA  - en
ID  - CMUC_2010__51_4_a7
ER  - 
%0 Journal Article
%A Toumi, M. A.
%T The Kadison problem on a class  of commutative Banach algebras with closed cone
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 631-637
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a7/
%G en
%F CMUC_2010__51_4_a7
Toumi, M. A. The Kadison problem on a class  of commutative Banach algebras with closed cone. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 631-637. http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a7/