On Kantorovich's result on the symmetry of Dini derivatives
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 619-629
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For $f:(a,b)\to \mathbb R$, let $A_f$ be the set of points at which $f$ is Lipschitz from the left but not from the right. L.V. Kantorovich (1932) proved that, if $f$ is continuous, then $A_f$ is a “($k_d$)-reducible set”. The proofs of L. Zajíček (1981) and B.S. Thomson (1985) give that $A_f$ is a $\sigma$-strongly right porous set for an arbitrary $f$. We discuss connections between these two results. The main motivation for the present note was the observation that Kantorovich's result implies the existence of a $\sigma$-strongly right porous set $A\subset (a,b)$ for which no continuous $f$ with $A\subset A_f$ exists. Using Thomson's proof, we prove that such continuous $f$ (resp. an arbitrary $f$) exists if and only if there exist strongly right porous sets $A_n$ such that $A_n\nearrow A$. This characterization improves both results mentioned above.
Classification :
26A27, 28A05
Keywords: Dini derivative; one-sided Lipschitzness; $\sigma$-porous set; strong right porosity; abstract porosity
Keywords: Dini derivative; one-sided Lipschitzness; $\sigma$-porous set; strong right porosity; abstract porosity
@article{CMUC_2010__51_4_a6,
author = {Koc, Martin and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
title = {On {Kantorovich's} result on the symmetry of {Dini} derivatives},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {619--629},
publisher = {mathdoc},
volume = {51},
number = {4},
year = {2010},
mrnumber = {2858265},
zbl = {1224.26021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a6/}
}
TY - JOUR AU - Koc, Martin AU - Zajíček, Luděk TI - On Kantorovich's result on the symmetry of Dini derivatives JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 619 EP - 629 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a6/ LA - en ID - CMUC_2010__51_4_a6 ER -
Koc, Martin; Zajíček, Luděk. On Kantorovich's result on the symmetry of Dini derivatives. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 619-629. http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a6/