Functional separability
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 705-711.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space $X$ is functionally countable (FC) if for every continuous $f:X\to \mathbb R$, $|f(X)|\leq \omega$. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma$-products in $2^\kappa$, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\to \mathbb R$, $|f(Y)|\leq\omega$; $X$ is 3-FS if for every continuous $f:X\to \mathbb R$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\leq \omega$. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces.
Classification : 54C30, 54D65
Keywords: functionally countable; pseudo-$\aleph_1$-compact; DCCC; P-space; $\tau$-simple; scattered; 1-functionally separable; 2-functionally separable; 3-functionally separable; pseudocompact; dyadic compactum; $\sigma$-centered base; LOTS
@article{CMUC_2010__51_4_a12,
     author = {Levy, R. and Matveev, M.},
     title = {Functional separability},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {705--711},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2010},
     mrnumber = {2858271},
     zbl = {1224.54063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a12/}
}
TY  - JOUR
AU  - Levy, R.
AU  - Matveev, M.
TI  - Functional separability
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 705
EP  - 711
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a12/
LA  - en
ID  - CMUC_2010__51_4_a12
ER  - 
%0 Journal Article
%A Levy, R.
%A Matveev, M.
%T Functional separability
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 705-711
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a12/
%G en
%F CMUC_2010__51_4_a12
Levy, R.; Matveev, M. Functional separability. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 705-711. http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a12/