Functional separability
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 705-711
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A space $X$ is functionally countable (FC) if for every continuous $f:X\to \mathbb R$, $|f(X)|\leq \omega$. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma$-products in $2^\kappa$, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\to \mathbb R$, $|f(Y)|\leq\omega$; $X$ is 3-FS if for every continuous $f:X\to \mathbb R$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\leq \omega$. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces.
Classification :
54C30, 54D65
Keywords: functionally countable; pseudo-$\aleph_1$-compact; DCCC; P-space; $\tau$-simple; scattered; 1-functionally separable; 2-functionally separable; 3-functionally separable; pseudocompact; dyadic compactum; $\sigma$-centered base; LOTS
Keywords: functionally countable; pseudo-$\aleph_1$-compact; DCCC; P-space; $\tau$-simple; scattered; 1-functionally separable; 2-functionally separable; 3-functionally separable; pseudocompact; dyadic compactum; $\sigma$-centered base; LOTS
@article{CMUC_2010__51_4_a12,
author = {Levy, R. and Matveev, M.},
title = {Functional separability},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {705--711},
publisher = {mathdoc},
volume = {51},
number = {4},
year = {2010},
mrnumber = {2858271},
zbl = {1224.54063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a12/}
}
Levy, R.; Matveev, M. Functional separability. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 705-711. http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a12/