Closure-preserving covers in function spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 693-703.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that if $C_p(X)$ admits a closure-preserving cover by closed $\sigma$-compact sets then $X$ is finite. If $X$ is compact and $C_p(X)$ has a closure-preserving cover by separable subspaces then $X$ is metrizable. We also prove that if $C_p(X,[0,1])$ has a closure-preserving cover by compact sets, then $X$ is discrete.
Classification : 54C35
Keywords: closure-preserving covers; function spaces; compact spaces; pointwise convergence topology; topological game; winning strategy
@article{CMUC_2010__51_4_a11,
     author = {S\'anchez, David Guerrero},
     title = {Closure-preserving covers in function spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {693--703},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2010},
     mrnumber = {2858270},
     zbl = {1224.54045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a11/}
}
TY  - JOUR
AU  - Sánchez, David Guerrero
TI  - Closure-preserving covers in function spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 693
EP  - 703
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a11/
LA  - en
ID  - CMUC_2010__51_4_a11
ER  - 
%0 Journal Article
%A Sánchez, David Guerrero
%T Closure-preserving covers in function spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 693-703
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a11/
%G en
%F CMUC_2010__51_4_a11
Sánchez, David Guerrero. Closure-preserving covers in function spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 4, pp. 693-703. http://geodesic.mathdoc.fr/item/CMUC_2010__51_4_a11/