A note on propagation of singularities of semiconcave functions of two variables
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 453-458
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
P. Albano and P. Cannarsa proved in 1999 that, under some applicable conditions, singularities of semiconcave functions in $\mathbb R^n$ propagate along Lipschitz arcs. Further regularity properties of these arcs were proved by P. Cannarsa and Y. Yu in 2009. We prove that, for $n=2$, these arcs are very regular: they can be found in the form (in a suitable Cartesian coordinate system) $\psi(x) = (x, y_1(x)-y_2(x))$, $x\in [0,\alpha]$, where $y_1$, $y_2$ are convex and Lipschitz on $[0,\alpha]$. In other words: singularities propagate along arcs with finite turn.
@article{CMUC_2010__51_3_a6,
author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
title = {A note on propagation of singularities of semiconcave functions of two variables},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {453--458},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2010},
mrnumber = {2741878},
zbl = {1224.26047},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_3_a6/}
}
TY - JOUR AU - Zajíček, Luděk TI - A note on propagation of singularities of semiconcave functions of two variables JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 453 EP - 458 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2010__51_3_a6/ LA - en ID - CMUC_2010__51_3_a6 ER -
Zajíček, Luděk. A note on propagation of singularities of semiconcave functions of two variables. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 453-458. http://geodesic.mathdoc.fr/item/CMUC_2010__51_3_a6/