On Jordan ideals and derivations in rings with involution
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 389-395.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a $2$-torsion free $\ast$-prime ring, $d$ a derivation which commutes with $\ast$ and $J$ a $\ast$-Jordan ideal and a subring of $R$. In this paper, it is shown that if either $d$ acts as a homomorphism or as an anti-homomorphism on $J$, then $d=0$ or $J\subseteq Z(R)$. Furthermore, an example is given to demonstrate that the $\ast$-primeness hypothesis is not superfluous.
Classification : 16N16, 16U70, 16U80, 16W10, 16W25
Keywords: $\ast$-prime rings; Jordan ideals; derivations
@article{CMUC_2010__51_3_a0,
     author = {Oukhtite, Lahcen},
     title = {On {Jordan} ideals and derivations in rings with involution},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {389--395},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2010},
     mrnumber = {2741872},
     zbl = {1211.16037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_3_a0/}
}
TY  - JOUR
AU  - Oukhtite, Lahcen
TI  - On Jordan ideals and derivations in rings with involution
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 389
EP  - 395
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_3_a0/
LA  - en
ID  - CMUC_2010__51_3_a0
ER  - 
%0 Journal Article
%A Oukhtite, Lahcen
%T On Jordan ideals and derivations in rings with involution
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 389-395
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_3_a0/
%G en
%F CMUC_2010__51_3_a0
Oukhtite, Lahcen. On Jordan ideals and derivations in rings with involution. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 3, pp. 389-395. http://geodesic.mathdoc.fr/item/CMUC_2010__51_3_a0/