On the combinatorics of Kac's asymmetry function
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 217-235.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We use categories to recast the combinatorial theory of full heaps, which are certain labelled partially ordered sets that we introduced in previous work. This gives rise to a far simpler set of definitions, which we use to outline a combinatorial construction of the so-called loop algebras associated to affine untwisted Kac--Moody algebras. The finite convex subsets of full heaps are equipped with a statistic called parity, and this naturally gives rise to Kac's asymmetry function. The latter is a key ingredient in understanding the (integer) structure constants of simple Lie algebras with respect to certain Chevalley bases, which also arise naturally in the context of heaps.
Classification : 06A07, 17B20, 17B67
Keywords: Lie algebra; Chevalley basis; heap
@article{CMUC_2010__51_2_a6,
     author = {Green, R. M.},
     title = {On the combinatorics of {Kac's} asymmetry function},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {217--235},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2010},
     mrnumber = {2682475},
     zbl = {1224.17032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a6/}
}
TY  - JOUR
AU  - Green, R. M.
TI  - On the combinatorics of Kac's asymmetry function
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 217
EP  - 235
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a6/
LA  - en
ID  - CMUC_2010__51_2_a6
ER  - 
%0 Journal Article
%A Green, R. M.
%T On the combinatorics of Kac's asymmetry function
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 217-235
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a6/
%G en
%F CMUC_2010__51_2_a6
Green, R. M. On the combinatorics of Kac's asymmetry function. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 217-235. http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a6/