Octonionic Cayley spinors and $E_6$
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 193-207
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group $E_6$, and of its subgroups. We are therefore led to a description of $E_6$ in terms of $3\times 3$ octonionic matrices, generalizing previous results in the $2\times 2$ case. Our treatment naturally includes a description of several important subgroups of $E_6$, notably $G_2$, $F_4$, and (the double cover of) $SO(9,1)$. An interpretation of the actions of these groups on the squares of 3-component Cayley spinors is suggested.
Classification :
17A35, 17C90, 22E70
Keywords: octonions; $E_6$; exceptional Lie groups; Dirac equation
Keywords: octonions; $E_6$; exceptional Lie groups; Dirac equation
@article{CMUC_2010__51_2_a4,
author = {Dray, Tevian and Manogue, Corinne A.},
title = {Octonionic {Cayley} spinors and $E_6$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {193--207},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2010},
mrnumber = {2682473},
zbl = {1224.17006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a4/}
}
TY - JOUR AU - Dray, Tevian AU - Manogue, Corinne A. TI - Octonionic Cayley spinors and $E_6$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 193 EP - 207 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a4/ LA - en ID - CMUC_2010__51_2_a4 ER -
Dray, Tevian; Manogue, Corinne A. Octonionic Cayley spinors and $E_6$. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 193-207. http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a4/