On the structure of finite loop capable nilpotent groups
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 349-355.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider finite loops and discuss the problem which nilpotent groups are isomorphic to the inner mapping group of a loop. We recall some earlier results and by using connected transversals we transform the problem into a group theoretical one. We will get some new answers as we show that a nilpotent group having either $C_{p^k} \times C_{p^l}$, $k > l \geq 0$ as the Sylow $p$-subgroup for some odd prime $p$ or the group of quaternions as the Sylow $2$-subgroup may not be loop capable.
Classification : 20D10, 20D15, 20F18, 20N05
Keywords: loop; group; connected transversals
@article{CMUC_2010__51_2_a17,
     author = {Rytty, Miikka},
     title = {On the structure of finite loop capable nilpotent groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {349--355},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2010},
     mrnumber = {2682486},
     zbl = {1211.20021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a17/}
}
TY  - JOUR
AU  - Rytty, Miikka
TI  - On the structure of finite loop capable nilpotent groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 349
EP  - 355
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a17/
LA  - en
ID  - CMUC_2010__51_2_a17
ER  - 
%0 Journal Article
%A Rytty, Miikka
%T On the structure of finite loop capable nilpotent groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 349-355
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a17/
%G en
%F CMUC_2010__51_2_a17
Rytty, Miikka. On the structure of finite loop capable nilpotent groups. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 349-355. http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a17/