Diassociativity is not finitely based relative to power associativity
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 305-317.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that the variety of diassociative loops is not finitely based even relative to power associative loops with inverse property.
Classification : 03C05, 03C20, 08B05
Keywords: loop; diassociativity; equational basis
@article{CMUC_2010__51_2_a14,
     author = {Kowalski, Tomasz},
     title = {Diassociativity is not finitely based relative to power associativity},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {305--317},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2010},
     mrnumber = {2682483},
     zbl = {1224.08005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a14/}
}
TY  - JOUR
AU  - Kowalski, Tomasz
TI  - Diassociativity is not finitely based relative to power associativity
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 305
EP  - 317
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a14/
LA  - en
ID  - CMUC_2010__51_2_a14
ER  - 
%0 Journal Article
%A Kowalski, Tomasz
%T Diassociativity is not finitely based relative to power associativity
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 305-317
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a14/
%G en
%F CMUC_2010__51_2_a14
Kowalski, Tomasz. Diassociativity is not finitely based relative to power associativity. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 305-317. http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a14/